Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732093

RESUMO

The chromatin organization and its dynamic remodeling determine its accessibility and sensitivity to DNA damage oxidative stress, the main source of endogenous DNA damage. We studied the role of the VRK1 chromatin kinase in the response to oxidative stress. which alters the nuclear pattern of histone epigenetic modifications and phosphoproteome pathways. The early effect of oxidative stress on chromatin was studied by determining the levels of 8-oxoG lesions and the alteration of the epigenetic modification of histones. Oxidative stress caused an accumulation of 8-oxoG DNA lesions that were increased by VRK1 depletion, causing a significant accumulation of DNA strand breaks detected by labeling free 3'-DNA ends. In addition, oxidative stress altered the pattern of chromatin epigenetic marks and the nuclear phosphoproteome pathways that were impaired by VRK1 depletion. Oxidative stress induced the acetylation of H4K16ac and H3K9 and the loss of H3K4me3. The depletion of VRK1 altered all these modifications induced by oxidative stress and resulted in losses of H4K16ac and H3K9ac and increases in the H3K9me3 and H3K4me3 levels. All these changes were induced by the oxidative stress in the epigenetic pattern of histones and impaired by VRK1 depletion, indicating that VRK1 plays a major role in the functional reorganization of chromatin in the response to oxidative stress. The analysis of the nuclear phosphoproteome in response to oxidative stress detected an enrichment of the phosphorylated proteins associated with the chromosome organization and chromatin remodeling pathways, which were significantly decreased by VRK1 depletion. VRK1 depletion alters the histone epigenetic pattern and nuclear phosphoproteome pathways in response to oxidative stress. The enzymes performing post-translational epigenetic modifications are potential targets in synthetic lethality strategies for cancer therapies.


Assuntos
Epigênese Genética , Histonas , Estresse Oxidativo , Proteínas Serina-Treonina Quinases , Humanos , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteoma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Dano ao DNA , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Linhagem Celular Tumoral , Acetilação , Processamento de Proteína Pós-Traducional
2.
Mol Oncol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650175

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a limited number of known driver mutations but considerable cancer cell heterogeneity. Phosphoproteomics provides a direct read-out of aberrant signaling and the resultant clinically relevant phenotype. Mass spectrometry (MS)-based proteomics and phosphoproteomics were applied to 42 PDAC tumors. Data encompassed over 19 936 phosphoserine or phosphothreonine (pS/T; in 5412 phosphoproteins) and 1208 phosphotyrosine (pY; in 501 phosphoproteins) sites and a total of 3756 proteins. Proteome data identified three distinct subtypes with tumor intrinsic and stromal features. Subsequently, three phospho-subtypes were apparent: two tumor intrinsic (Phos1/2) and one stromal (Phos3), resembling known PDAC molecular subtypes. Kinase activity was analyzed by the Integrative iNferred Kinase Activity (INKA) scoring. Phospho-subtypes displayed differential phosphorylation signals and kinase activity, such as FGR and GSK3 activation in Phos1, SRC kinase family and EPHA2 in Phos2, and EGFR, INSR, MET, ABL1, HIPK1, JAK, and PRKCD in Phos3. Kinase activity analysis of an external PDAC cohort supported our findings and underscored the importance of PI3K/AKT and ERK pathways, among others. Interestingly, unfavorable patient prognosis correlated with higher RTK, PAK2, STK10, and CDK7 activity and high proliferation, whereas long survival was associated with MYLK and PTK6 activity, which was previously unknown. Subtype-associated activity profiles can guide therapeutic combination approaches in tumor and stroma-enriched tissues, and emphasize the critical role of parallel signaling pathways. In addition, kinase activity profiling identifies potential disease markers with prognostic significance.

3.
iScience ; 27(2): 108958, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38323010

RESUMO

The protein kinase D (PKD) family members regulate the fission of cargo vesicles at the Golgi complex and play a pro-oncogenic role in triple-negative breast cancer (TNBC). Whether PKD facilitates the secretion of tumor-promoting factors in TNBC, however, is still unknown. Using the pharmacological inhibition of PKD activity and siRNA-mediated depletion of PKD2 and PKD3, we identified the PKD-dependent secretome of the TNBC cell lines MDA-MB-231 and MDA-MB-468. Mass spectrometry-based proteomics and antibody-based assays revealed a significant downregulation of extracellular matrix related proteins and pro-invasive factors such as LIF, MMP-1, MMP-13, IL-11, M-CSF and GM-CSF in PKD-perturbed cells. Notably, secretion of these proteins in MDA-MB-231 cells was predominantly controlled by PKD2 and enhanced spheroid invasion. Consistently, PKD-dependent secretion of pro-invasive factors was more pronounced in metastatic TNBC cell lines. Our study thus uncovers a novel role of PKD2 in releasing a pro-invasive secretome.

4.
Chem Biol Interact ; 391: 110908, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367682

RESUMO

Dynamic chromatin remodeling requires regulatory mechanisms for its adaptation to different nuclear function, which are likely to be mediated by signaling proteins. In this context, VRK1 is a nuclear Ser-Thr kinase that regulates pathways associated with transcription, replication, recombination, and DNA repair. Therefore, VRK1 is a potential regulatory, or coordinator, molecule in these processes. In this work we studied the effect that VRK1 depletion has on the basal nuclear and chromatin phosphoproteome, and their associated pathways. VRK1 depletion caused an alteration in the pattern of the nuclear phosphoproteome, which is mainly associated with nucleoproteins, ribonucleoproteins, RNA splicing and processing. Next, it was determined the changes in proteins associated with DNA damage that was induced by doxorubicin treatment. Doxorubicin alters the nuclear phosphoproteome affecting proteins implicated in DDR, including DSB repair proteins NBN and 53BP1, cellular response to stress and chromatin organization proteins. In VRK1-depleted cells, the effect of doxorubicin on protein phosphorylation was reverted to basal levels. The nuclear phosphoproteome patterns induced by doxorubicin are altered by VRK1 depletion, and is enriched in histone modification proteins and chromatin associated proteins. These results indicate that VRK1 plays a major role in processes requiring chromatin remodeling in its adaptation to different biological contexts.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cromatina , Fosforilação , Dano ao DNA , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Reparo do DNA , Doxorrubicina/farmacologia
5.
Nutrients ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337670

RESUMO

Micronutrient deficiencies can develop in critically ill patients, arising from factors such as decreased intake, increased losses, drug interactions, and hypermetabolism. These deficiencies may compromise important immune functions, with potential implications for patient outcomes. Alternatively, micronutrient blood levels may become low due to inflammation-driven redistribution rather than consumption. This explorative pilot study investigates blood micronutrient concentrations during the first three weeks of ICU stay in critically ill COVID-19 patients and evaluates the impact of additional micronutrient administration. Moreover, associations between inflammation, disease severity, and micronutrient status were explored. We measured weekly concentrations of vitamins A, B6, D, and E; iron; zinc; copper; selenium; and CRP as a marker of inflammation state and the SOFA score indicating disease severity in 20 critically ill COVID-19 patients during three weeks of ICU stay. Half of the patients received additional (intravenous) micronutrient administration. Data were analyzed with linear mixed models and Pearson's correlation coefficient. High deficiency rates of vitamins A, B6, and D; zinc; and selenium (50-100%) were found at ICU admission, along with low iron status. After three weeks, vitamins B6 and D deficiencies persisted, and iron status remained low. Plasma levels of vitamins A and E, zinc, and selenium improved. No significant differences in micronutrient levels were found between patient groups. Negative correlations were identified between the CRP level and levels of vitamins A and E, iron, transferrin, zinc, and selenium. SOFA scores negatively correlated with vitamin D and selenium levels. Our findings reveal high micronutrient deficiency rates at ICU admission. Additional micronutrient administration did not enhance levels or expedite their increase. Spontaneous increases in vitamins A and E, zinc, and selenium levels were associated with inflammation resolution, suggesting that observed low levels may be attributed, at least in part, to redistribution rather than true deficiencies.


Assuntos
COVID-19 , Selênio , Oligoelementos , Humanos , Micronutrientes , Estado Terminal , Projetos Piloto , Vitaminas , Vitamina A , Zinco , Ferro , Inflamação , Vitamina K
6.
Mol Cell Proteomics ; 23(2): 100688, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38281326

Assuntos
Proteômica
7.
Proteomics ; 24(7): e2300262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221716

RESUMO

The cancer cell secretome comprises a treasure-trove for biomarkers since it reflects cross-talk between tumor cells and their surrounding environment with high detectability in biofluids. In this study, we evaluated six secretome sample processing workflows coupled to single-shot mass spectrometry: (1) Protein concentration by ultrafiltration with a molecular weight cut-off (MWCO) filter and sample preparation through in-gel digestion (IGD); (2) Acetone protein precipitation coupled to IGD; (3) MWCO filter-based protein concentration followed by to in-solution digestion (ISD); (4) Acetone protein precipitation coupled to ISD; (5) Direct ISD; (6) Secretome lyophilization and ISD. To this end, we assessed workflow triplicates in terms of total number of protein identifications, unique identifications, reproducibility of protein identification and quantification and detectability of small proteins with important functions in cancer biology such as cytokines, chemokines, and growth factors. Our findings revealed that acetone protein precipitation coupled to ISD outperformed the other methods in terms of the number of identified proteins (2246) and method reproducibility (correlation coefficient between replicates (r = 0.94, CV = 19%). Overall, especially small proteins such as those from the classes mentioned above were better identified using ISD workflows. Concluding, herein we report that secretome protein precipitation coupled to ISD is the method of choice for high-throughput secretome proteomics via single shot nanoLC-MS/MS.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Reprodutibilidade dos Testes , Acetona , Secretoma , Proteínas/metabolismo , Proteoma/metabolismo
8.
Clin Proteomics ; 20(1): 49, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940875

RESUMO

The tyrosine kinase inhibitor sunitinib is an effective first-line treatment for patients with advanced renal cell carcinoma (RCC). Hypothesizing that a functional read-out by mass spectrometry-based (phospho, p-)proteomics will identify predictive biomarkers for treatment outcome of sunitinib, tumor tissues of 26 RCC patients were analyzed. Eight patients had primary resistant (RES) and 18 sensitive (SENS) RCC. A 78 phosphosite signature (p < 0.05, fold-change > 2) was identified; 22 p-sites were upregulated in RES (unique in RES: BCAR3, NOP58, EIF4A2, GDI1) and 56 in SENS (35 unique). EIF4A1/EIF4A2 were differentially expressed in RES at the (p-)proteome and, in an independent cohort, transcriptome level. Inferred kinase activity of MAPK3 (p = 0.026) and EGFR (p = 0.045) as determined by INKA was higher in SENS. Posttranslational modifications signature enrichment analysis showed that different p-site-centric signatures were enriched (p < 0.05), of which FGF1 and prolactin pathways in RES and, in SENS, vanadate and thrombin treatment pathways, were most significant. In conclusion, the RCC (phospho)proteome revealed differential p-sites and kinase activities associated with sunitinib resistance and sensitivity. Independent validation is warranted to develop an assay for upfront identification of patients who are intrinsically resistant to sunitinib.

9.
Mol Oncol ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010703

RESUMO

The majority of patients with resected stage II-IIIA non-small cell lung cancer (NSCLC) are treated with platinum-based adjuvant chemotherapy (ACT) in a one-size-fits-all approach. However, a significant number of patients do not derive clinical benefit, and no predictive patient selection biomarker is currently available. Using mass spectrometry-based proteomics, we have profiled tumour resection material of 2 independent, multi-centre cohorts of in total 67 patients with NSCLC who underwent ACT. Unsupervised cluster analysis of both cohorts revealed a poor response/survival sub-cluster composed of ~ 25% of the patients, that displayed a strong epithelial-mesenchymal transition signature and stromal phenotype. Beyond this stromal sub-population, we identified and validated platinum response prediction biomarker candidates involved in pathways relevant to the mechanism of action of platinum drugs, such as DNA damage repair, as well as less anticipated processes such as those related to the regulation of actin cytoskeleton. Integration with pre-clinical proteomics data supported a role for several of these candidate proteins in platinum response prediction. Validation of one of the candidates (HMGB1) in a third independent patient cohort using immunohistochemistry highlights the potential of translating these proteomics results to clinical practice.

10.
Methods Mol Biol ; 2718: 235-251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37665463

RESUMO

Urinary extracellular vesicles (uEVs) are a rich source of noninvasive protein biomarkers. However, for translation to clinical applications, an easy-to-use uEV isolation protocol is needed that is compatible with proteomics. Here, we provide a detailed description of a quick and clinical applicable uEV isolation protocol. We focus on the isolation procedure and subsequent in-depth proteome characterization using LC-MS/MS-based proteomics. As an example, we show how differential analyses can be performed using urine samples obtained from prostate cancer patients, compared to urine from controls.


Assuntos
Vesículas Extracelulares , Sistema Urinário , Masculino , Humanos , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem
11.
Methods Mol Biol ; 2718: 285-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37665466

RESUMO

Proteogenomic analysis is emerging as an advantageous tool to assist personalized therapy decisions in clinical health care and integrates complementary information from the genome, transcriptome, and (phospho)proteome. A prerequisite for such analysis is a workflow for the simultaneous isolation of DNA, RNA, and protein from a single sample that does not compromise the different biological molecules and their examination. Focusing on the phosphoproteomic aspect of this workflow, we here provide detailed information on our protocol, which is based on commonly used acid guanidinium thiocyanate-phenol-chloroform (AGPC) extraction with RNA-Bee. We describe the necessary steps for biopsy collection, cryoprocessing, and protein extraction. We further share our practice on protein digestion and cleanup of small samples (200 µg protein) and describe settings for automated IMAC-based phosphopeptide enrichment with the AssayMAP Bravo platform.


Assuntos
Guanidinas , Tiocianatos , Animais , Abelhas , Biópsia , RNA
12.
Sci Transl Med ; 15(709): eabm3687, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37585503

RESUMO

Epidermal growth factor receptor (EGFR) is a well-exploited therapeutic target in metastatic colorectal cancer (mCRC). Unfortunately, not all patients benefit from current EGFR inhibitors. Mass spectrometry-based proteomics and phosphoproteomics were performed on 30 genomically and pharmacologically characterized mCRC patient-derived xenografts (PDXs) to investigate the molecular basis of response to EGFR blockade and identify alternative drug targets to overcome resistance. Both the tyrosine and global phosphoproteome as well as the proteome harbored distinctive response signatures. We found that increased pathway activity related to mitogen-activated protein kinase (MAPK) inhibition and abundant tyrosine phosphorylation of cell junction proteins, such as CXADR and CLDN1/3, in sensitive tumors, whereas epithelial-mesenchymal transition and increased MAPK and AKT signaling were more prevalent in resistant tumors. Furthermore, the ranking of kinase activities in single samples confirmed the driver activity of ERBB2, EGFR, and MET in cetuximab-resistant tumors. This analysis also revealed high kinase activity of several members of the Src and ephrin kinase family in 2 CRC PDX models with genomically unexplained resistance. Inhibition of these hyperactive kinases, alone or in combination with cetuximab, resulted in growth inhibition of ex vivo PDX-derived organoids and in vivo PDXs. Together, these findings highlight the potential value of phosphoproteomics to improve our understanding of anti-EGFR treatment and response prediction in mCRC and bring to the forefront alternative drug targets in cetuximab-resistant tumors.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cetuximab/uso terapêutico , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Transdução de Sinais , Fosfoproteínas , Proteoma
13.
Patterns (N Y) ; 4(7): 100792, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37521047

RESUMO

A comprehensive pan-human spectral library is critical for biomarker discovery using mass spectrometry (MS)-based proteomics. DPHL v.1, a previous pan-human library built from 1,096 data-dependent acquisition (DDA) MS data of 16 human tissue types, allows quantifying of 10,943 proteins. Here, we generated DPHL v.2 from 1,608 DDA-MS data. The data included 586 DDA-MS data acquired from 18 tissue types, while 1,022 files were derived from DPHL v.1. DPHL v.2 thus comprises data from 24 sample types, including several cancer types (lung, breast, kidney, and prostate cancer, among others). We generated four variants of DPHL v.2 to include semi-tryptic peptides and protein isoforms. DPHL v.2 was then applied to two colorectal cancer cohorts. The numbers of identified and significantly dysregulated proteins increased by at least 21.7% and 14.2%, respectively, compared with DPHL v.1. Our findings show that the increased human proteome coverage of DPHL v.2 provides larger pools of potential protein biomarkers.

14.
Circ Res ; 133(5): 387-399, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37477020

RESUMO

BACKGROUND: Diastolic dysfunction is central to diseases such as heart failure with preserved ejection fraction and hypertrophic cardiomyopathy (HCM). However, therapies that improve cardiac relaxation are scarce, partly due to a limited understanding of modulators of cardiomyocyte relaxation. We hypothesized that cardiac relaxation is regulated by multiple unidentified proteins and that dysregulation of kinases contributes to impaired relaxation in patients with HCM. METHODS: We optimized and increased the throughput of unloaded shortening measurements and screened a kinase inhibitor library in isolated adult cardiomyocytes from wild-type mice. One hundred fifty-seven kinase inhibitors were screened. To assess which kinases are dysregulated in patients with HCM and could contribute to impaired relaxation, we performed a tyrosine and global phosphoproteomics screen and integrative inferred kinase activity analysis using HCM patient myocardium. Identified hits from these 2 data sets were validated in cardiomyocytes from a homozygous MYBPC3c.2373insG HCM mouse model. RESULTS: Screening of 157 kinase inhibitors in wild-type (N=33) cardiomyocytes (n=24 563) resulted in the identification of 17 positive inotropes and 21 positive lusitropes, almost all of them novel. The positive lusitropes formed 3 clusters: cell cycle, EGFR (epidermal growth factor receptor)/IGF1R (insulin-like growth factor 1 receptor), and a small Akt (α-serine/threonine protein kinase) signaling cluster. By performing phosphoproteomic profiling of HCM patient myocardium (N=24 HCM and N=8 donors), we demonstrated increased activation of 6 of 8 proteins from the EGFR/IGFR1 cluster in HCM. We validated compounds from this cluster in mouse HCM (N=12) cardiomyocytes (n=2023). Three compounds from this cluster were able to improve relaxation in HCM cardiomyocytes. CONCLUSIONS: We showed the feasibility of screening for functional modulators of cardiomyocyte relaxation and contraction, parameters that we observed to be modulated by kinases involved in EGFR/IGF1R, Akt, cell cycle signaling, and FoxO (forkhead box class O) signaling, respectively. Integrating the screening data with phosphoproteomics analysis in HCM patient tissue indicated that inhibition of EGFR/IGF1R signaling is a promising target for treating impaired relaxation in HCM.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Contração Miocárdica , Cardiomiopatia Hipertrófica/metabolismo , Miócitos Cardíacos/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo
15.
Alzheimers Res Ther ; 15(1): 124, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454217

RESUMO

BACKGROUND: Alzheimer's disease (AD) cerebrospinal fluid (CSF) core biomarkers (Aß42/40 ratio, p-tau, and t-tau) provide high diagnostic accuracy, even at the earliest stage of disease. However, these markers do not fully reflect the complex AD pathophysiology. Recent large scale CSF proteomic studies revealed several new AD candidate biomarkers related to metabolic pathways. In this study we measured the CSF levels of four metabolism-related proteins not directly linked to amyloid- and tau-pathways (i.e., pyruvate kinase, PKM; aldolase, ALDO; ubiquitin C-terminal hydrolase L1, UCHL1, and fatty acid-binding protein 3, FABP3) across the AD continuum. We aimed at validating the potential value of these proteins as new CSF biomarkers for AD and their possible involvement in AD pathogenesis, with specific interest on the preclinical phase of the disease. METHODS: CSF PKM and ALDO activities were measured with specific enzyme assays while UCHL1 and FABP3 levels were measured with immunoassays in a cohort of patients composed as follows: preclinical AD (pre-AD, n = 19, cognitively unimpaired), mild cognitive impairment due to AD (MCI-AD, n = 50), dementia due to AD (ADdem, n = 45), and patients with frontotemporal dementia (FTD, n = 37). Individuals with MCI not due to AD (MCI, n = 30) and subjective cognitive decline (SCD, n = 52) with negative CSF AD-profile, were enrolled as control groups. RESULTS: CSF UCHL1 and FABP3 levels, and PKM activity were significantly increased in AD patients, already at the pre-clinical stage. CSF PKM activity was also increased in FTD patients compared with control groups, being similar between AD and FTD patients. No difference was found in ALDO activity among the groups. UCHL1 showed good performance in discriminating early AD patients (pre-AD and MCI-AD) from controls (AUC ~ 0.83), as assessed by ROC analysis. Similar results were obtained for FABP3. Conversely, PKM provided the best performance when comparing FTD vs. MCI (AUC = 0.80). Combination of PKM, FABP3, and UCHL1 improved the diagnostic accuracy for the detection of patients within the AD continuum when compared with single biomarkers. CONCLUSIONS: Our study confirmed the potential role of UCHL1 and FABP3 as neurodegenerative biomarkers for AD. Furthermore, our results validated the increase of PKM activity in CSF of AD patients, already at the preclinical phase of the disease. Increased PKM activity was observed also in FTD patients, possibly underlining similar alterations in energy metabolism in AD and FTD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência Frontotemporal , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Demência Frontotemporal/líquido cefalorraquidiano , Proteínas do Líquido Cefalorraquidiano , Proteômica , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
16.
J Transl Med ; 21(1): 366, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280612

RESUMO

BACKGROUND: Epicardial adipose tissue (EAT) secretome induces fibrosis. Fibrosis, primarily extracellular matrix (ECM) produced by fibroblasts, creates a substrate for atrial fibrillation (AF). Whether the EAT secretome from patients with AF activates human atrial fibroblasts and through which components, remains unexplored. RESEARCH AIMS: (a) To investigate if the EAT secretome from patients with versus without AF increases ECM production in atrial fibroblasts. (b) To identify profibrotic proteins and processes in the EAT secretome and EAT from patients with, who will develop (future onset), and without AF. METHODS: Atrial EAT was obtainded during thoracoscopic ablation (AF, n = 20), or open-heart surgery (future onset and non-AF, n = 35). ECM gene expression of human atrial fibroblasts exposed to the EAT secretome and the proteomes of EAT secretome and EAT were assessed in patients with and without AF. Myeloperoxidase and neutrophil extracellular traps (NETs) were assessed immunohistochemically in patients with paroxysmal, persistent, future onset, and those who remain free of AF (non-AF). RESULTS: The expression of COL1A1 and FN1 in fibroblasts exposed to secretome from patients with AF was 3.7 and 4.7 times higher than in patients without AF (p < 0.05). Myeloperoxidase was the most increased protein in the EAT secretome and EAT from patients with versus without AF (FC 18.07 and 21.57, p < 0.005), as was the gene-set neutrophil degranulation. Immunohistochemically, myeloperoxidase was highest in persistent (FC 13.3, p < 0.0001) and increased in future onset AF (FC 2.4, p = 0.02) versus non-AF. Myeloperoxidase aggregated subepicardially and around fibrofatty infiltrates. NETs were increased in patients with persistent versus non-AF (p = 0.03). CONCLUSION: In AF, the EAT secretome induces ECM gene expression in atrial fibroblasts and contains abundant myeloperoxidase. EAT myeloperoxidase was increased prior to AF onset, and both myeloperoxidase and NETs were highest in persistent AF, highlighting the role of EAT neutrophils in the pathophysiology of AF.


Assuntos
Fibrilação Atrial , Humanos , Tecido Adiposo/metabolismo , Fibrilação Atrial/metabolismo , Fibrose , Átrios do Coração/patologia , Pericárdio/metabolismo , Peroxidase/metabolismo
17.
Cell Rep ; 42(6): 112581, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37269289

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a limited set of known driver mutations but considerable cancer cell heterogeneity. Phosphoproteomics provides a readout of aberrant signaling and has the potential to identify new targets and guide treatment decisions. Using two-step sequential phosphopeptide enrichment, we generate a comprehensive phosphoproteome and proteome of nine PDAC cell lines, encompassing more than 20,000 phosphosites on 5,763 phospho-proteins, including 316 protein kinases. By using integrative inferred kinase activity (INKA) scoring, we identify multiple (parallel) activated kinases that are subsequently matched to kinase inhibitors. Compared with high-dose single-drug treatments, INKA-tailored low-dose 3-drug combinations against multiple targets demonstrate superior efficacy against PDAC cell lines, organoid cultures, and patient-derived xenografts. Overall, this approach is particularly more effective against the aggressive mesenchymal PDAC model compared with the epithelial model in both preclinical settings and may contribute to improved treatment outcomes in PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Combinação de Medicamentos , Neoplasias Pancreáticas
18.
Cell Rep ; 42(5): 112538, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37209095

RESUMO

BRCA1 and BRCA2 both function in DNA double-strand break repair by homologous recombination (HR). Due to their HR defect, BRCA1/2-deficient cancers are sensitive to poly(ADP-ribose) polymerase inhibitors (PARPis), but they eventually acquire resistance. Preclinical studies yielded several PARPi resistance mechanisms that do not involve BRCA1/2 reactivation, but their relevance in the clinic remains elusive. To investigate which BRCA1/2-independent mechanisms drive spontaneous resistance in vivo, we combine molecular profiling with functional analysis of HR of matched PARPi-naive and PARPi-resistant mouse mammary tumors harboring large intragenic deletions that prevent reactivation of BRCA1/2. We observe restoration of HR in 62% of PARPi-resistant BRCA1-deficient tumors but none in the PARPi-resistant BRCA2-deficient tumors. Moreover, we find that 53BP1 loss is the prevalent resistance mechanism in HR-proficient BRCA1-deficient tumors, whereas resistance in BRCA2-deficient tumors is mainly induced by PARG loss. Furthermore, combined multi-omics analysis identifies additional genes and pathways potentially involved in modulating PARPi response.


Assuntos
Neoplasias , Neoplasias Ovarianas , Animais , Camundongos , Feminino , Humanos , Proteína BRCA1/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Multiômica , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias/genética , Neoplasias Ovarianas/genética
19.
Alzheimers Dement ; 19(11): 4828-4840, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37023079

RESUMO

INTRODUCTION: Extracellular vesicles (EVs) may propagate and modulate Alzheimer's disease (AD) pathology. We aimed to comprehensively characterize the proteome of cerebrospinal fluid (CSF) EVs to identify proteins and pathways altered in AD. METHODS: CSF EVs were isolated by ultracentrifugation (Cohort 1) or Vn96 peptide (Cohort 2) from non-neurodegenerative controls (n = 15, 16) and AD patients (n = 22, 20, respectively). EVs were subjected to untargeted quantitative mass spectrometry-based proteomics. Results were validated by enzyme-linked immunosorbent assay (ELISA) in Cohorts 3 and 4, consisting of controls (n = 16, n = 43, (Cohort3, Cohort4)), and patients with AD (n = 24, n = 100). RESULTS: We found > 30 differentially expressed proteins in AD CSF EVs involved in immune-regulation. Increase of C1q levels in AD compared to non-demented controls was validated by ELISA (∼ 1.5 fold, p (Cohort 3) = 0.03, p (Cohort 4) = 0.005). DISCUSSION: EVs may be utilized as a potential biomarker and may play a so far unprecedented role in immune-regulation in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Vesículas Extracelulares , Humanos , Doença de Alzheimer/patologia , Complemento C1q , Proteômica , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Vesículas Extracelulares/metabolismo , Proteínas tau/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano
20.
Cancer Med ; 12(9): 10979-10989, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36916528

RESUMO

PURPOSE: In precision oncology, tumor molecular profiles guide selection of therapy. Standardized snap freezing of tissue biospecimens is necessary to ensure reproducible, high-quality samples that preserve tumor biology for adequate molecular profiling. Quenching in liquid nitrogen (LN2 ) is the golden standard method, but LN2 has several limitations. We developed a LN2 -independent snap freezer with adjustable cold sink temperature. To benchmark this device against the golden standard, we compared molecular profiles of biospecimens. METHODS: Cancer cell lines and core needle normal tissue biopsies from five patients' liver resection specimens were used to compare mass spectrometry (MS)-based global phosphoproteomic and RNA sequencing profiles and RNA integrity obtained by both freezing methods. RESULTS: Unsupervised cluster analysis of phosphoproteomic and transcriptomic profiles of snap freezer versus LN2 -frozen K562 samples and liver biopsies showed no separation based on freezing method (with Pearson's r 0.96 (range 0.92-0.98) and >0.99 for K562 profiles, respectively), while samples with +2 h bench-time formed a separate cluster. RNA integrity was also similar for both snap freezing methods. Molecular profiles of liver biopsies were clearly identified per individual patient regardless of the applied freezing method. Two to 25 s freezing time variations did not induce profiling differences in HCT116 samples. CONCLUSION: The novel snap freezer preserves high-quality biospecimen and allows identification of individual patients' molecular profiles, while overcoming important limitations of the use of LN2 . This snap freezer may provide a useful tool in clinical cancer research and practice, enabling a wider implementation of (multi-)omics analyses for precision oncology.


Assuntos
Criopreservação , Neoplasias , Humanos , Criopreservação/métodos , Neoplasias/genética , Medicina de Precisão , Congelamento , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA